상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

응집 계층 군집화 기법을 이용한 이종 공간정보의 M:N 대응 클래스 군집 쌍 탐색

Detection of M:N corresponding class group pairs between two spatial datasets with agglomerative hierarchical clustering

  • 52
109592.jpg

본 연구는 두 공간정보의 대응 클래스 군집 쌍 탐색을 중심으로 의미론적 정합과정에서 발생하는 M:N 대응관계를 분석하는 방법을 제안한다. 객체의 공유 관계를 이용하여 클래스의 유사도를 측정하고 높은 유사도를 가지는 클래스들을 군집화함으로써 M:N 대응관계를 탐색하고자 한다. 클래스 사이의 유사도를 그래프 모형으로 표현하고 그래프 임베딩 기법을 적용하여 투영공간에서 클래스 사이의 거리가 클래스 중첩분석에 의한 국지적 유사도에 반비례하도록 개별 클래스들의 투영좌표를 계산하고 군집화를 수행함으로써 계층적 대응 군집 쌍을 탐색할 수 있다. 제안된 방법을 평가하기 위하여 경기도 수원시의 수치지형도와 연속지적도에 적용하여 수치지형도의 면 객체 레이어와 연속지적도의 필지 지목의 대응 군집 쌍을 탐색하였다. 탐색된 대응 클래스 쌍의 F-measure를 측정한 결과 약 0.80에서 0.35 사이의 다양한 값을 얻을 수 있었으며, 클래스 명칭과는 상이한 다양한 대응관계를 얻을 수 있었다.

In this paper, we propose a method to analyze M:N corresponding relations in semantic matching, especially focusing on feature class matching. Similarities between any class pairs are measured by spatial objects which coexist in the class pairs, and corresponding classes are obtained by clustering with these pairwise similarities. We applied a graph embedding method, which constructs a global configuration of each class in a low-dimensional Euclidean space while preserving the above pairwise similarities, so that the distances between the embedded classes are proportional to the overall degree of similarity on the edge paths in the graph. Thus, the clustering problem could be solved by employing a general clustering algorithm with the embedded coordinates. We applied the proposed method to polygon object layers in a topographic map and land parcel categories in a cadastral map of Suwon area and evaluated the results. F-measures of the detected class pairs were analyzed to validate the results. And some class pairs which would not detected by analysis on nominal class names were detected by the proposed method.

Abstract

초록

1. 서론

2. 선행연구 분석

3. k 차원 그래프 임베딩

4. 제안된 M:N 대응 클래스 군집 쌍 탐색

5. 실험 및 평가

6. 결론 및 향후 연구

감사의 글

참고문헌

(0)

(0)

로딩중