상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

다단계 정육면체 격자 기반의 가상점 생성을 통한 대용량 3D point cloud 가시화

Massive 3D Point Cloud Visualization by Generating Artificial Center Points from Multi-Resolution Cube Grid Structure

  • 40
110364.jpg

건축, 토목, 의료, 컴퓨터 그래픽스 분야 등 다양한 분야에서 이용되는 3D point cloud는 최근 레이저 스캐너의 발달로 인해 그 용량이 점점 커지게 되었다. 컴퓨터 메모리의 용량을 넘어서서 모든 데이터를 한 번에 처리할 수 없는 대용량 3D point cloud를 가시화하고 편집하기 위해 여러 전처리 및 가시화 방법들이 소개되었고 본 논문에서 비교한 QSplat의 경우 3D 모델의 형상 확인과 용량 감소를 목적으로 원본 좌표를 손실 압축하여 저장하였다. 본 논문에서 제시하는 방법은 3D point cloud를 정육면체 격자로 분할하고 center sampling을 통해 가상점 집합을 생성하며 가시화과정에서 격자에 저장된 point 집합 취득을 통한 빠른 렌더링이 가능하다. 홍익대학교 인근 지역을 측정한 약 1억 2천만 개 point의 대용량 3D point cloud를 QSplat과 다단계 정육면체 격자 기반 방법으로 비교한 결과 전처리 과정에서는 QSplat이, 가시화 과정에서는 다단계 정육면체 격자 기반 방법이 빠른 속도를 보여주었다. 또한 다단계 정육면체 격자 기반 방법은 point의 원본 좌표를 저장하기에 추후 가시화 외에 편집, segmentation 등의 작업을 고려하여 고안되었다.

3D point cloud is widely used in Architecture, Civil Engineering, Medical, Computer Graphics, and many other fields. Due to the improvement of 3D laser scanner, a massive 3D point cloud whose gigantic file size is bigger than computer’s memory requires efficient preprocessing and visualization. We suggest a data structure to solve the problem; a 3D point cloud is gradually subdivided by arbitrary-sized cube grids structure and corresponding point cloud subsets generated by the center of each grid cell are achieved while preprocessing. A massive 3D point cloud file is tested through two algorithms: QSplat and ours. Our algorithm, grid-based, showed slower speed in preprocessing but performed faster rendering speed comparing to QSplat. Also our algorithm is further designed to editing or segmentation using the original coordinates of 3D point cloud.

Abstract

초록

1. 서론

2. 관련 개념

3. 다단계 정육면체 격자 기반 가상점 방법

4. 실험 및 결과 분석

5. 결론 및 고찰

감사의 글

참고문헌

(0)

(0)

로딩중