상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

도박사의 오류와 확률해석

Gambler's Fallacy and Probability Theory

  • 678
110392.jpg

동전을 아홉 번 던져 모두 앞면이 나왔을 때‘이제까지 모두 앞면이 나왔으므로 동전을 던지는 10번째에서는 뒷면이 나올 확률이 높다’는 추론은 도박사의 오류로 평가된다. 10번째 동전던지기가 실은 앞의 사건들과 독립적이라는 이유에서이다. 본 논문에서 필자는 이 사례를 도박사의 오류로 평가할 것인가는 확률 해석에 의존한다고 주장한다. 고전적 확률이론을 수용한다면 이 추론을 도박사의 오류로 평가하기에 충분하다. 하지만 고전적 확률이론은 편향된 주사위 사례를 다룰 수 없으므로 우리의 확률이해를 반영하기에 충분하지 않다. 한편 확률을 진술들 사이의 논리적 관계로 주장하는 논리적 확률이론에 따라 확률을 이해한다면 이제까지의 아홉 번의 동전던지기의 결과는 10번째 동전던지기의 결과를 추론하는데 경험적 증거로 작용하고 이것은 10번째 동전던지기 결과를 예측하는데 확률적으로 영향을 미친다. 따라서 ‘이제까지 모두 앞면이 나왔으므로 동전을 던지는 10번째에서는 뒷면(또는 앞면)이 나올 확률이 높다’는 추론을 도박사의 오류로 평가할 수 없다

In this paper I argue that the Gambler's Fallacy is dependent on the interpretation of probability. It's the Gambler's fallacy to infer that tail of the coin would probably come out on the next trial from the fact that every 9 flip of the coin produced head. Cause each flip of the coin is probably independent of all the other flips. But according to Keynes probability is "the various degrees of rational belief about a proposition which different amounts of knowledge authorize us to entertain." In the coin flips the fact that every 9 flip of the coin produced head is an evidence for the inductive inference about the outcome of the next trial, and this evidence affects the probability of the belief about the conclusion. The probable affection doesn't make it the fallacy.

【요약문】

1. 도입

2. 1/2의 확률과 고전적 확률이론

3. 2/3의 확률과 독립사건

4. 논리적 확률이론

5. 결론

【참고문헌】

【Abstract】

(0)

(0)

로딩중