Physics simulation is an important part of many interactive 2D applications and collision detection and response is key component of this simulation. While methods for reducing the number of collision tests that need to be performed has been well researched, methods for performing the final checks with collision primitives have seen little recent development. This paper presents a new collision primitive, the n-arc, constructed from piecewise circular curves or biarcs. An algorithm for performing a collision check between these primitives is presented and compared to a convex polygon primitive. The n-arc is shown to exhibit similar, though slightly slower, performance to a polygon when no collision occurs, but is considerably faster when a collision does occur. The goodness of fit of the new primitive is also compared to a polygon. While the n-arc often gives a looser fit in terms of area, the continuous tangents of the n-arcs makes them a good choice for organic, soft or curved surfaces.

Ⅰ. Introduction

Ⅱ. N-arc Collision Primitive

Ⅲ. Evaluation

Ⅳ. Conclusion and Further Work