상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

딥러닝을 이용한 양파 밭의 잡초 검출 연구

Deep learning-based Automatic Weed Detection on Onion Field

  • 197
144401.jpg

이 논문은 양파 밭에서 딥러닝 기반 자동 잡초 검출기의 설계 및 구현을 제시합니다. 이 시스템은 컨볼루션 뉴럴 네트워크를 기반으로 제안 된 영역을 선택합니다. 검출기는 양파 밭에서 직접 찍은 데이터 셋을 가지고 훈련됩니다. 학습이 완료 된 후에, 잡초가 될 확률이 매우 높은 후보 지역을 잡초로 간주합니다. Non-maximum suppression을 통해 오버랩된 박스가 최대한 적게 남게 됩니다. 다른 양파 농장을 통해 수집된 데이터를 통해 제안 된 분류기를 평가합니다. 분류 정확도는 고려 된 데이터 셋에서 약 99%를 보여주며, 제안된 방법이 양파 밭에서 잡초 검출과 관련하여 우수한 성능을 나타냄을 알 수 있습니다.

This paper presents the design and implementation of a deep learning-based automated weed detector on onion fields. The system is based on a Convolutional Neural Network that specifically selects proposed regions. The detector initiates training with a dataset taken from agricultural onion fields, after which candidate regions with very high probability of suspicion are considered weeds. Non-maximum suppression helps preserving the less overlapped bounding boxes. The dataset collected from different onion farms is evaluated with the proposed classifier. Classification accuracy is about 99% for the dataset, indicating the proposed method’s superior performance with regard to weed detection on the onion fields.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 제안 접근법

Ⅳ. 실험결과

Ⅴ. 결론

(0)

(0)

로딩중