
토마토 잎사귀 질병 감지를 위한 이미지 처리 메커니즘
An Image Processing Mechanism for Disease Detection in Tomato Leaf
- 박정현(Jeong-Hyeon Park) 이성근(Sung-Keun Lee)
- 한국전자통신학회
- 한국전자통신학회 논문지
- 제14권 제5호
- 등재여부 : KCI등재
- 2019.09
- 959 - 968 (10 pages)
농업 분야에서 여러 가지 센서들과 임베디드 시스템을 활용하여 한 무선 센서 네트워크 기술이 적용되고 있는 추세이다. 특히, 센서 네트워크를 활용하여 작물의 질병을 조기에 진단할 수 있는 많은 연구가 진행되고 있다. 기존 병충해 진단 연구들은 실제 농가에 적용하기 어려운 부분이 존재한다. 본 논문은 이를 개선하고자하였으며, 화상카메라를 통해 받아온 작물의 잎사귀 이미지를 분석하여 병충해를 초기에 감지 가능한 알고리즘을 제안한다. 실제 시설원예 및 노지 환경 농가의 캡쳐한 이미지 내에서 감염 의심 영역을 개선된 K 평균클러스터링 기법을 통해 분류하였다. 그 후 엣지 검출, 엣지 추적 기법을 활용하여 해당 영역의 잎사귀 내부존재 여부를 확인하였다. 인근 농가에서 촬영한 토마토 잎사귀 이미지를 이용하여 성능 평가를 수행하였다. 기존 논문의 방법 보다 제안 알고리즘의 감영 영역 분류 능력이 우수한 것으로 나타났다.
In the agricultural industry, wireless sensor network technology has being applied by utilizing various sensors and embedded systems. In particular, a lot of researches are being conducted to diagnose diseases of crops early by using sensor network. There are some difficulties on traditional research how to diagnose crop diseases is not practical for agriculture. This paper proposes the algorithm which enables to investigate and analyze the crop leaf image taken by image camera and detect the infected area within the image. We applied the enhanced k-means clustering method to the images captured at horticulture facility and categorized the areas in the image. Then we used the edge detection and edge tracking scheme to decide whether the extracted areas are located in inside of leaf or not. The performance was evaluated using the images capturing tomato leaves. The results of performance evaluation shows that the proposed algorithm outperforms the traditional algorithms in terms of classification capability.
Ⅰ. Introduction
Ⅱ. Related Work
Ⅲ. Image processing method to detect crop leaf disease
Ⅳ. Performance evaluation of the proposed mechanism
Ⅴ. Conclusion