눈 영상비를 이용한 운전자 상태 경고 시스템
A Driver s Condition Warning System using Eye Aspect Ratio
- 한국전자통신학회
- 한국전자통신학회 논문지
- 제15권 제2호
- : KCI등재
- 2020.04
- 349 - 356 (8 pages)
본 논문은 교통사고 방지를 위한 운전자의 눈 영상비를 이용한 상태 경고시스템의 설계에 대해 소개하고 있다. 제안하는 운전자 상태 경고 시스템은 눈 인식을 위한 카메라, 카메라를 통해 들어오는 정보를 처리하는 라즈베리파이, 그리고 그 정보를 통해 운전자에게 경고를 줄 때 필요한 부저와 진동기로 구성되어 있다. 운전자의 눈을 인식하기 위해서 기울기 방향성 히스토그램 기술과 딥러닝 기반의 얼굴 표지점 추정 기법을 사용하였다. 동작을 시작하면, 시스템은 눈 주변의 6개의 좌표를 통해 눈 영상비를 계산한다. 그리고 눈을 뜬 상태와 감은 상태의 눈 영상비를 각각 계산한 후 이 두 값으로부터 눈의 상태를 판단하는데 사용하는 문턱 값을 설정한다. 문턱 값이 운전자의 눈 크기에 적응하면서 설정되기 때문에 시스템은 최적의 문턱 값을 사용하여 운전자의 상태를 판단할 수 있다. 또한 낮은 조도에서도 눈을 인식할 수 있도록 회색조 변환 이미지와 LAB모델 이미지를 합성하여 사용하였다.
This paper introduces the implementation of a driver’s condition warning system using eye aspect ratio to prevent a car accident. The proposed driver’s condition warning system using eye aspect ratio consists of a camera, that is required to detect eyes, the Raspberrypie that processes information on eyes from the camera, buzzer and vibrator, that are required to warn the driver. In order to detect and recognize driver’s eyes, the histogram of oriented gradients and face landmark estimation based on deep-learning are used. Initially the system calculates the eye aspect ratio of the driver from 6 coordinates around the eye and then gets each eye aspect ratio values when the eyes are opened and closed. These two different eye aspect ratio values are used to calculate the threshold value that is necessary to determine the eye state. Because the threshold value is adaptively determined according to the driver’s eye aspect ratio, the system can use the optimal threshold value to determine the driver’s condition. In addition, the system synthesizes an input image from the gray-scaled and LAB model images to operate in low lighting conditions.
Ⅰ. 서 론
Ⅱ. 운전자 상태 경고 시스템
Ⅲ. 시스템 구현 결과
Ⅳ. 결 론
References