Brucella abortus is an intracellular bacterial pathogen that causes brucellosis in humans and livestock. The genome of B. abortus encodes the VirB type IV secretion system (T4SS), which is essential to its virulence. B. abortus produces and secretes effector proteins through the T4SS to survive in the intracellular environment and manipulate host immunity. The T4SS spans the peptidoglycan layer through vacancies in the peptidoglycan chain. Recently, secretion activator gene A (SagA) from B. abortus was identified as a lysozyme-like enzyme that creates holes in the peptidoglycan layer. In this study, SagA from B. abortus was overexpressed, purified, and crystallized. Crystal diffraction data were acquired at 2.0 Å resolution, a P213 space group with a unit cell parameter of 79.04 Å. We are currently exploring the crystal structure of SagA using the anomalous signal from selenomethionine-substituted crystals and an X-ray free-electron laser.
INTRODUCTION
RESULTS AND DISCUSSION
MATERIALS AND METHODS
ACKNOWLEDGEMENTS
REFERENCES