Fast Super-Resolution GAN 기반 자동차 번호판 검출 및 인식 성능 고도화 기법
Improved Method of License Plate Detection and Recognition Facilitated by Fast Super-Resolution GAN
- 한국스마트미디어학회
- 스마트미디어저널
- Vol9, No.4
- : KCI등재후보
- 2020.12
- 134 - 143 (10 pages)
자동차 번호판 인식 기술은 도로의 교통상황 통제, 과속차량 단속, 도주 차량의 추적 등 현대 교통 시설 및 교통 안전망을 책임지고 있는 핵심 기술 중 하나이다. 이 기법은 과거에도 연구되었던 분야였으나 최근 딥러닝 기술의 발전으로 다양한 기법들을 적용하여 향상된 성능을 보이는 분야이며, 크게 자동차 번호판 검출과 번호판 인식으로 나뉜다. 본 연구에서는 다양한 객체 검출 모델과 WPOD-Net(Warped Planar Object Detection Network) 모델을 활용하여 자동차 번호판 검출 성능을 향상시키기 위한 실험을 진행하였으며, 객체 검출 모델을 활용하여 번호판을 검출하는 기존 방식들 대신 차량을 검출한 다음 번호판을 검출하는 방식을 택하여 정확도를 높였다. 특히 Super-Resolution 기법 중 하나인 Fast-SRGAN 모델을 활용하여 이미지 내에 존재하는 노이즈를 제거하는 처리를 통해 최종 성능을 향상시켰다. 결과적으로 92.38%에서 96.72%로 선행 연구 대비 평균 4.34% 향상된 성능이 실험을 통해 확인되었다.
Vehicle License Plate Recognition is one of the approaches for transportation and traffic safety networks, such as traffic control, speed limit enforcement and runaway vehicle tracking. Although it has been studied for decades, it is attracting more and more attention due to the recent development of deep learning and improved performance. Also, it is largely divided into license plate detection and recognition. In this study, experiments were conducted to improve license plate detection performance by utilizing various object detection methods and WPOD-Net(Warped Planar Object Detection Network) model. The accuracy was improved by selecting the method of detecting the vehicle(s) and then detecting the license plate(s) instead of the conventional method of detecting the license plate using the object detection model. In particular, the final performance was improved through the process of removing noise existing in the image by using the Fast-SRGAN model, one of the Super-Resolution methods. As a result, this experiment showed the performance has improved an average of 4.34% from 92.38% to 96.72% compared to previous studies.
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. Proposed Method
Ⅳ. Conclusion
REFERENCES