This study was conducted to establish an efficient transformation system by using somatic embryogenesis in an important Korean native conifer, Korean fir (Abies koreana). Embryogenic masses were induced from mature zygotic embryos of the Korean fir on Schenk and Hildebrandt medium, which was supplemented with thidiazuron. For genetic transformation, the embryogenic masses were co-cultivated with a disarmed Agrobacterium tumefaciens strain C58/pMP90 containing the plasmid vector pBIV10 or LBA4404 containing the plasmid vector MP90. Both vectors contain the kanamycin resistance and beta-glucuronidase (GUS) reporter genes. A total of 48 lines of embryogenic masses were selected on mLV medium containing 50 μg/mL of kanamycin after 4 weeks of culture, following 3 days of co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 (none of the lines was cultivated with strain LBA4404 carrying MP90). Quantitative real-time PCR was performed, and high levels of GUS transcripts were observed in the 48 putative transgenic lines; however, the control (non-transgenic line) showed negative results. Results of histochemical staining showed that the expression of the GUS reporter gene was observed in somatic embryos that developed from the embryogenic masses of all 48 lines. Stably transformed cultures were successfully produced by co-cultivation with A. tumefaciens strain C58/pMP90 carrying pBIV10 in Korean fir. Here, we have reported an Agrobacterium-mediated gene transfer protocol via somatic embryogenesis that may be helpful in developing breeding and conservation strategies for the Korean fir.
Introduction
Materials and Methods
Results and Discussion
References