Somatic embryos do not survive at exposure to liquid nitrogen temperatures without cryoprotective treatments. A simplified technique which simultaneously induces and cryoprotects embryogenic calli using plant vitrification solution 2 (PVS2) followed by dehydration was developed for the cryopreservation of Soap berry genetic resources. Vitrification is a way of removing the moisture in vegetation through PVS2. The PVS2 vitrification solution consisted of 30% glycerol (w/v), 15% ethylene glycol (w/v), 15% Dimethylsulfoxide (w/v) in B5 medium containing 0.4M sucrose. Two tests were done. The one was to eliminate moisture at 0∘C and the other at 25∘C. In both cases the best results came out at a vitrification time of 10∼20 minutes. It was also found that the survival rate was higher at 0∘C than at 25∘C. In particular, the survival rate reached more than 80%. Water-damaged embryos turned brown and stoped growth, but energetic embryos took on a milky hue and show a very vigorous growth rate. Successful cryopreservation of somatic embryos of soapberry can be used to establish in vitro genebanks for long-term conservation of Soapberry genetic resources to complement field genebanks and other in vitro methods already being used.