상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
155781.jpg
KCI등재 학술저널

몬테칼로 시뮬레이션 기반의 다수 지상 연성표적에 대한 최적 조준점 산출

Monte Carlo Simulation based Optimal Aiming Point Computation Against Multiple Soft Targets on Ground

DOI : 10.9709/JKSS.2020.29.1.047
  • 30

본 논문은 드론봇 전투체계를 운용하여 전투전단의 적 보병부대 위치정보를 수집하였을 시, 지휘관이 요구하는 적 부대 피해수준을 충족하면서 적 보병부대를 신속하고 정확하게 타격하기 위하여, 보유한 화력체계의 살상범위를 기초로 최적의 사격발수 및 조준점 위치를 실시간 자동으로 산출하는 인공지능 알고리즘 연구이다. 이를 위해, 100m×200m 크기의 야지 전장환경에서 증강된 소대급 규모의 적 보병부대를 임의로 전개 및 모의하고, 약 15m의 살상범위를 갖는 가상의 화력체계에 대한 모델링을 수행하였으며, 각개 적병사의 무피해/경상 및 중상/사망 등의 피해유형 및 임무수행 가능여부를 모의하기 위하여 연성표적의 피해효과에 적용되는 칼튼피해함수를 적용하고 전장의 불확실성을 모의하기 위하여 몬테칼로 시뮬레이션을 수행하였다. 또한, 지휘관 의도에 부합된 적부대의 피해수준을 달성하기 위하여, 반복적인 모의 및 비지도학습의 k-mean clustering 기법을 적용하여 최적의 사격발수 및 조준점 위치를 0.4초 이내로 산출하였다. 본 연구에서 제안하는 방법은 드론봇 전투체계를 운용하는 대대급 규모의 전투부대에서 ‘탐지-결심-타격’ 의사결정시간의 단축에 기여할 것으로 판단된다.

This paper presents a real-time autonomous computation of shot numbers and aiming points against multiple soft targets on grounds by applying an unsupervised learning, k-mean clustering and Monte carlo simulation. For this computation, a 100 × 200 square meters size of virtual battlefield is created where an augmented enemy infantry platoon unit attacks, defences, and is scatted, and a virtual weapon with a lethal range of 15m is modeled. In order to determine damage types of the enemy unit: no damage, light wound, heavy wound and death, Monte carlo simulation is performed to apply the Carlton damage function for the damage effect of the soft targets. In addition, in order to achieve the damage effectiveness of the enemy units in line with the commander’s intention, the optimal shot numbers and aiming point locations are calculated in less than 0.4 seconds by applying the k-mean clustering and repetitive Monte carlo simulation. It is hoped that this study will help to develop a system that reduces the decision time for ‘detection-decision-shoot’ process in battalion-scaled combat units operating Dronebot combat system.

1. 서론

2. 시스템 구성

3. 결과 및 분석

5. 결론

References

로딩중