상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
155781.jpg
KCI등재 학술저널

특징집합 IG-MLP 평가 기반의 최적화된 특징선택 방법을 이용한 질환 예측 머신러닝 모델

Optimized Feature Selection using Feature Subset IG-MLP Evaluation based Machine Learning Model for Disease Prediction

DOI : 10.9709/JKSS.2020.29.1.011
  • 33

암을 제외한 한국인의 가장 높은 사망원인은 심뇌혈관질환으로 사망원인의 24%를 차지한다. 현재 국내 환자의 심혈관질환의 위험도 산출은 프레밍험 위험지수를 기반으로 하지만, 국외의 가이드라인에 의존하고 있어 정확도가 떨어지는 편이며, 뇌혈관질환의 예측에 대한 위험도는 산출할 수 없다. 심뇌혈관질환은 예방을 위한 조기증상들의 특징 분석이 어려워 질환 예측이 힘들며, 한국인에 적합한 예측 방법이 필요하다. 본 연구의 목적은 심뇌혈관질환 데이터를 이용하여, 특징집합 IG-MLP 평가 기반의 특징선택 방법론을 시뮬레이션 하여 검증하는 것이다. 제안하는 방법은 제4 ~ 7기 국민건강영양조사 원시자료를 이용한다. 심뇌혈관질환의 예측에 중요한 특징들을 선별하기 위해, 속성들의 심뇌혈관질환에 대한 정보이득-다층신경망을 이용한 분석을 실시하며, 최종적으로 선별된 특징을 이용한 심뇌혈관질환 예측 모델을 제공한다. 제안하는 방법으로 한국인의 심뇌혈관질환에 관련된 중요한 특징들을 찾을 수 있으며, 최적화된 특징들로 구성된 예측 모델은 한국인에 대해 더욱 정확한 심뇌혈관 예측을 할 수 있다.

1. 서론

2. 관련연구

3. 방법

4. 데이터 모델

5. 데이터 전처리

6. 평가

7. 결론

References

로딩중