상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
155737.jpg
KCI등재 학술저널

수상돌기 소극체의 형태변화 분석을 위한 공초점현미경 영상 분할 및 구조추출

Confocal Microscopy Image Segmentation and Extracting Structural Information for Morphological Change Analysis of Dendritic Spine

공초점 현미경(confocal microscopy) 기술의 적용은 살아있는 세포를 고배율로 관찰하는 것을 가능하게 하였다. 알츠하이머나 파킨슨 질환같은 퇴행성 뇌질환의 경우 뇌세포의 수상돌기의 형태학적 변화가 연관되어 있음이 알려져 있다. 따라서 공초점 현미경 영상으로부터 이러한 정보를 추출하는 방법에 대한 연구가 필요하다. 그러나 공초점 현미경 영상은 명암도 분포가 고르지 않고, 구조의 경계 부분의 번짐 현상 등으로 인해 구조 추출에 어려움을 겪고 있는 실정이다. 따라서 이러한 문제를 극복하고 관심 구조에 대한 특성을 추출할 수 있는 영상처리 기법이 필요하다. 본 논문에서는 뇌세포의 수상돌기 공초점 현미경 사진으로부터 구조정보를 추출하는 새로운 방법을 제안한다. 첫째, 미세분기 구조의 경계를 향상시키는 비선형 확산 필터링을 적용한다. 둘째, 관심구조를 반복적 역치 선택 방법을 이용해 분할한다. 셋째, 분할된 구조의 분석을 위해 구조의 중심축과 경계선을 추출하기 위한 패스트 마칭 방법(Fast Marching Method)에 기반을 둔 골격화를 수행한다. 본 논문에서 제안된 방법은 기존의 방법들과는 달리 주변 잡음에 덜 민감하였으며 거친 경계선에 영향을 훨씬 적게 받음으로써 보다 정확하고 사실적인 중심축 추출 결과를 보였다.

The introduction of confocal microscopy makes it possible to observe the structural change of live neuronal cell. Neuro-degenerative disease, such as Alzheimer;s and Parkinson’s diseases are especially related to the morphological change of dendrite spine. That’s the reason for the study of segmentation and extraction from confocal microscope image. The difficulty comes from uneven intensity distribution and blurred boundary. Therefore, the image processing technique which can overcome these problems and extract the structural information should be suggested. In this paper, we propose robust structural information extracting technique with confocal microscopy images of dendrite in brain neurons. First, we apply the nonlinear diffusion filtering that enhance the boundary recognition. Second, we segment region of interest using iterative threshold selection. Third, we perform skeletonization based on Fast Marching Method that extracts centerline and boundary for analysing segmented structure. The result of the proposed method has been less sensitive to noise and has not been affected by rough boundary condition. Using this method shows more accurate and objective results.

1. 서론

2. 수상돌기 소극체 현미경 영상의 특성

3. 경계 정보를 고려한 관심 구조 분할

4. 분기구조와 경계선 추출

5. 구현환경 및 실험결과

6. 결론

로딩중