클라우드 환경은 빅데이터의 이슈와 데이터 분석을 가능하게 하는 기술로서, 이를 위한 자원 관리 기법이 필요하다. 현재까지의 자원관리 기법은 한정된 계산 방법을 이용하여 자원의 편중의 문제점이 있으며, 이를 해결하기 위해서 자원관리는 자원이력 정보를 활용한 학습기반의 스케줄링이 필요하다. 본 논문에서는 ART(Adaptive Resonance Theory)기반의 적응형 자원관리기법을 제안한다. 제안하는 기법은 클라우드환경에서 모니터링 및 자원이력을 이용하여 작업의 적합한 할당이 가능하다. 제안하는 방법은 무감독 학습방법을 사용하며, 적응형 자원 관리를 통하여 서비스의 안정성과 데이터 처리성능을 향상시키는 것을 목적으로 한다. 제안하는 방법은 체계적인 자원관리가 가능하고 가용자원을 효율적으로 활용하여 요구 성능을 향상시킬 수 있다는 장점이 있다.
The cloud environment need resource management method that to enable the big data issue and data analysis technology. Existing resource management uses the limited calculation method, therefore concentrated the resource bias problem. To solve this problem, the resource management requires the learning-based scheduling using resource history information. In this paper, we proposes the ART (Adaptive Resonance Theory)-based adaptive resource management. Our proposed method assigns the job to the suitable method with the resource monitoring and history management in cloud computing environment. The proposed method utilizes the unsupervised learning method. Our goal is to improve the data processing and service stability with the adaptive resource management. The propose method allow the systematic management, and utilize the available resource efficiently.
1. 서론
2. 관련 연구
3. 동적 자원구성을 위한 적응형 자원관리
4. 구현 및 시뮬레이션
5. 실험 및 결과
6. 결 론
References