상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
155768.jpg
KCI등재 학술저널

자가-적응 소프트웨어에서 사전 문제인지를 위한 하이브리드 모델 기반 적응 시점 판단 기법

A Timing Decision Method based on a Hybrid Model for Problem Recognition in advance in Self-adaptive Software

DOI : 10.9709/JKSS.2016.25.3.065
  • 6

자가-적응 소프트웨어는 스스로 문제를 인지하여 인지한 문제에 대하여 소프트웨어 사이클이 멈추지 않고 해당 요구사항에 맞게 적응하는 소프트웨어이다. 본 논문에서는 임계점이 존재하는 시스템에서 발생하는 불필요한 적응 수행을 감소시키기 위하여 선행적 방식으로 임계점 이후의 상황을 예측함으로써 문제가 되는 이벤트를 사전에 처리하고자 한다. 실측치는 대부분 선형과 비선형이 모두 나타나기 때문에 하이브리드 모델을 사용하여 임계점 이후를 예측하며, 예측 기법의 사용 여부는 예측의 정확도를 기반으로 하는 적응 시점 판단 지표를 기준으로 한다. 본 논문의 기여점으로는 하이브리드 모델을 MAPE-K에 적용하여 임계점 이후 상황을 예측함으로써 실제 변화에 대한 불확실성을 감소시켰다는 점과 적응 시점 판단 지표를 기반으로 적응 시점을 판단함으로써 불필요한 적응 수행을 줄였다는 데에 있다.

Self-adaptive software is software that adapts by itself to system requirements about the recognized problems without stopping the software cycle. In order to reduce the unnecessary adaptation in the system having the critical points, we propose proactive approach which can predict the future operation after a critical point. In this paper, we predict the future operation after a critical point using a hybrid model to deal with the characteristics of the observed data with the linear and non-linear pattern. The operation of the prediction method is determined on a timing decision indicator based on the prediction accuracy. The two main points of contributions of this paper are to reduce uncertainty about the future operation by predicting the situation after a critical point using hybrid model and to reduce unnecessary adaptation implementation by deciding a timing based on a timing decision indicator.

1. 서론

2. 관련 연구

3. 연구 배경

4. 제안 기법

5. 실험 및 평가

6. 결론

References

로딩중