상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지

Fault Detection of Unbalanced Cycle Signal Data Using SOM-based Feature Signal Extraction Method

  • 14
155751.jpg

본 연구는 공정신호가 불균형 데이터인 경우 이상 탐지 알고리즘의 성능 개선을 위한 특징 신호 추출 기법을 제안한다. 불균형 데이터란 범주 구분 문제에서 하나의 범주의 속하는 데이터의 비율이 다른 범주의 데이터에 비해 크게 차이나 이상 탐지 성능이 크게 저하되는 경우를 의미한다. 공정이 운영되는 경우 얻을 수 있는 이상 신호의 수는 정상 신호에 비해 매우 적기에 이러한 문제를 해결하여 이상 탐지 기법을 적용하는 것은 매우 중요하다. 불균형 문제 해결을 위해 SOM(Self-Organizing Map) 알고리즘을 이용하여 각 노드에 대응되는 가중치를 특징 신호로 간주하여 정상 데이터와 이상 데이터의 비율을 맞춘다. 특징 신호 데이터 집단의 이상 탐지를 위해 클래스 분류 기법인 kNN(k-Nearest Neighbor)과 SVM(Support Vector Machine)을 적용하여 이를 공정 신호 이상탐지를 위해 주로 사용하는 Hotelling’s T2 관리도와 성능을 비교한다. 반도체 공정에서 발생한다고 알려진 공정 신호를 모사하여 신호 알고리즘 성능의 우수성을 검증한다.

In this paper, a feature signal extraction method is proposed in order to enhance the low performance of fault detection caused by unbalanced data which denotes the situations when severe disparity exists between the numbers of class instances. Most of the cyclic signals gathered during the process are recognized as normal, while only a few signals are regarded as fault; the majorities of cyclic signals data are unbalanced data. SOM(Self-Organizing Map)-based feature signal extraction method is considered to fix the adverse effects caused by unbalanced data. The weight neurons, mapped to the every node of SOM grid, are extracted as the feature signals of both class data which are used as a reference data set for fault detection. kNN(k-Nearest Neighbor) and SVM(Support Vector Machine) are considered to make fault detection models with comparisons to Hotelling’s T2 Control Chart, the most widely used method for fault detection. Experiments are conducted by using simulated process signals which resembles the frequent cyclic signals in semiconductor manufacturing.

1. 서론

2. 특징 신호 추출

3. 이상 탐지

4. 실 험

5. 결 론

감사의 글

참고문헌

(0)

(0)

로딩중