상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
156110.jpg
KCI등재후보 학술저널

광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시

Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city

DOI : 10.30693/SMJ.2021.10.1.55
  • 112

광주광역시의 3대 주력산업인 자동차 산업, 에너지 산업, 그리고 AI/헬스케어 산업 등에 응용 가능한 AI 활용 사례로 준지도 학습, 전이 학습, 그리고 연합 학습의 머신러닝을 적용하며, 더불어 주력산업을 위한 AI 서비스를 위한 ML 전략을 정립하였다. AI 서비스의 ML 전략을 기반으로 실용적 접근 사례들을 제시하고자 하며, 준지도 학습의 접근 사례는 자동차 영상 인식 기술에 활용하며, 전이 학습의 접근 사례는 헬스케어 분야의 당뇨병성 망막병증 검출에 활용하고자 하며, 마지막으로 연합 학습의 접근 사례는 전력 수요 예측에 활용하고자 한다. 이러한 접근 사례들을 싱글보드 Raspberry Pi, Jaetson Nano, Intel i-7 등의 하드웨어를 기반으로 성능 테스트를 진행함과 동시에 실용적인 접근 사례들의 유효성을 검증하였다.

We applied machine learning of semi-supervised learning, transfer learning, and federated learning as examples of AI use cases that can be applied to the three major industries(Automobile industry, Energy industry, and AI/Healthcare industry) of Gwangju Metro-city, and established an ML strategy for AI services for the major industries. Based on the ML strategy of AI service, practical approaches are suggested, the semi-supervised learning approach is used for automobile image recognition technology, and the transfer learning approach is used for diabetic retinopathy detection in the healthcare field. Finally, the case of the federated learning approach is to be used to predict electricity demand. These approaches were tested based on hardware such as single board computer Raspberry Pi, Jaetson Nano, and Intel i-7, and the validity of practical approaches was verified.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 주력산업을 위한 AI 활용 전략

Ⅳ. 주력산업을 위한 AI 성능 평가

Ⅴ. 결론

로딩중