상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
157801.jpg
KCI우수등재 학술저널

LandGEM 모델을 이용한 청주권 생활폐기물 매립장의 매립지가스 발생상수 및 메탄 잠재발생량 산정

Estimation of Methane Generation Rate and Potential Methane Generation Capacity at Cheongju Megalo Landfill Site Based on LandGEM Model

  • 8

Methane is a potent greenhouse gas and methane emissions from landfill sites have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity Lo, but in this study, k value of 0.04/yr and Lo value of 100 m³/ton were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling like Cheongju Megalo Landfill. Relatively high discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions. Methane is a potent greenhouse gas and methane emissions from landfill sites have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity Lo, but in this study, k value of 0.04/yr and Lo value of 100 m³/ton were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling like Cheongju Megalo Landfill. Relatively high discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.

로딩중