상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

Brand Personality of Global Automakers through Text Mining

  • 18
158077.jpg

Purpose – This study aims to identify new attributes by analyzing reviews conducted by global automaker customers and to examine the influence of these attributes on satisfaction ratings in the U.S. automobile sales market. The present study used J.D. Power for customer responses, which is the largest online review site in the USA. Design/methodology – Automobile customer reviews are valid data available to analyze the brand personality of the automaker. This study collected 2,998 survey responses from automobile companies in the U.S. automobile sales market. Keyword analysis, topic modeling, and the multiple regression analysis were used to analyze the data. Findings – Using topic modeling, the author analyzed 2,998 responses of the U.S. automobile brands. As a result, Topic 1 (Competence), Topic 5 (Sincerity), and Topic 6 (Prestige) attributes had positive effects, and Topic 2 (Sophistication) had a negative effect on overall customer responses. Topic 4 (Conspicuousness) did not have any statistical effect on this research. Topic 1, Topic 5, and Topic 6 factors also show the importance of buying factors. This present study has contributed to identifying a new attribute, personality. These findings will help global automakers better understand the impacts of Topic 1, Topic 5, and Topic 6 on purchasing a car. Originality/value – Contrary to a traditional approach to brand analysis using questionnaire survey methods, this study analyzed customer reviews using text mining. This study is timely research since a big data analysis is employed in order to identify direct responses to customers in the future.

1. Introduction

2. Theoretical Background

3. Methodology and Hypothesis

4. Topic Modeling Results

5. Results and Conclusion

References

(0)

(0)

로딩중