Seven Days of Consecutive Shade during the Kernel Filling Stages Caused Irreparable Yield Reduction in Corn (Zea mays L.)
In monsoon climates, persistent shade is a troublesome weather condition with an impact on the growth and yield of corn (Zea mays L.). We imposed 7, 14, 21, and 28 days of consecutive shade (CS) on Gwangpyeongok and P3394 corn hybrids at the beginning of the kernel filling stages. Shade had little impact on leaf area and dry matter accumulation in the stem and leaves. However, dry matter accumulation in the ear was severely reduced by approximately 28% and 53% after 14 and 28 days of CS, respectively. For the components of grain yield, 7 and 14 days of shade did irreparable damage to the number of filled kernels, the kernel number per ear row, and the percent of filled kernels, but did little damage or reversible damage after removal of the shade to the 100-grain weight and the row number per ear. Shade significantly reduced the relative growth rate (RGR) due to a decrease in the net assimilation rate (NAR). These results suggest that source activity limitation by shade during the kernel filling stages leads to the inhibition of sink activity and size. The yield of biomass, ear, and grain logistically declined as the length of CS increased. Probit analysis revealed that the number of days of CS needed to cause 25% and 50% reductions in grain yield were 3.7 and 23.1, respectively. These results suggest that the plant yield loss induced by shade at the beginning of the kernel filling stages is mainly achieved within the first 7 days of consecutive shade.
Materials and methods
Results
Discussion
ACKNOWLEDGEMENT