야생 호밀 염색체 첨가 밀 계통의 단백질 발현 양상 비교 분석
Identification of the Protein Function and Comparison of the Protein Expression Patterns of Wheat Addition Lines with Wild Rye Chromosomes
The objectives of this study were to compare the protein expression patterns and degrees and identify the protein function of disomic addition lines (DAs) in Leymus racemosus, in order to improve the quality of wheat. Upon SDS-PAGE, L. racemosus showed two major protein bands whereas Chinese Spring (CS) had four major protein bands of high molecular weight. The DA(s) generally showed a similar protein expression pattern to that of CS, because 42 chromosomes were from CS and two chromosomes were from L. racemosus. However, only the L.r[J] line showed two protein bands of between 15 and 20 kDa, like L. racemosus. Image analysis based on 2-DE revealed that L.r[F] had the most upregulated protein spots, whereas L.r[N] had the least upregulated protein spots. For L.r[I], the frequency of the downregulated protein spots was higher than that of the upregulated ones. Using MALDI-TOF MS, the protein function was identified for each protein spot on the 2-DE polyacrylamide gel. The protein spots were classified into 11 groups according to protein function. Among the 11 groups, most protein spots of the DA(s) were identified as proteins related to metabolism. Additionally, unique protein spots of the DA(s) were related to abiotic stressors such as cold and heat. Those proteins are useful for improving wheat quality with resistance against abiotic stressors.
재료 및 방법
결과 및 고찰
적요
사사
인용문헌(REFERENCES)