Response of grain yield and milled-rice protein content to nitrogen (N) rates at various growth stages is critical for quantifying real-time and real-amount of applied N requirement for target grain yield and protein content. An experiment including 10 N rate treatments at transplanting, tillering and panicle initiation stages with four rice cultivars in 2003, 6 N treatments with two rice cultivars in 2004 and 2005 was conducted. Increase of N rates at PIS significantly increased both grain yield and milled-rice protein content but increase of N rates at tillering stage significantly increased grain yield but not milled-rice protein content. Therefore, high grain yield and low milled-rice protein content would be difficult to obtain only by adjusting N rates at PIS. Internal N use efficiency (INUE) was 60.5 kg grain/kg N accumulation on an average over N treatments, cultivars, and experimental years, showing considerable reduction especially at high shoot N accumulation in the experimental year of low sunshine duration. Milled-rice protein content tended to increase almost linearly with increasing shoot N accumulation, but it revealed big variation even at the same shoot N accumulation at harvest. Milled-rice protein content decreased with increasing INUE. N accumulation in the milled rice increased at an almost constant proportion of 45.5 percent of the shoot N accumulated at harvest, showing slight decresing proportion with the increasing shoot N accumulation.
MATERIALS AND METHODS
RESULTS AND DISCUSSION
CONCLUSION
ACKNOWLEDGEMENT
REFERENCES