상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
학술저널

악성댓글 판별의 성능 향상을 위한 품사 자질에 대한 분석 연구

An analysis study on the quality of article to improve the performance of hate comments discrimination

  • 76
160967.jpg

인터넷의 사용이 광범위 해져감에 따라 변화되는 사회적 측면 중 하나는 온라인 공간에서의 의사소통이다. 과거에는 물리적으로 같은 공간에 있을 때를 제외하고는 일대일 대화만 원격으로 가능했지만, 요즘은 게시판이나 커뮤니티, 소셜네트워크서비스(SNS) 등을 통해 다수의 사람들과 원격으로 소통할 수 있는 기술이 발달했다. 이러한 정보통신망의 발달로 생활이 편리해지고, 동시에 급격한 정보교류에 따른 피해도 끊임없이 증가하고 있다. 최근에는 연예인뿐 아니라 인플루언서 등 인터넷에서 인지도가 높은 특정인에게 성적인 메시지를 보내거나 인신공격을 가하는 등의 사이버 범죄가 발생하고 있으며, 이들 사이버 범죄에 노출된 이들 중 일부는 극단적인 선택을 하기도 하였다. 본 논문에서는 악성 댓글로 인한 피해를 줄이기 위해 음성 부분별 기능추출을 통한 차별적 악성 댓글의 성능향상 방안을 연구하였다.

One of the social aspects that changes as the use of the Internet becomes widespread is communication in online space. In the past, only one-on-one conversations were possible remotely, except when they were physically in the same space, but nowadays, technology has been developed to enable communication with a large number of people remotely through bulletin boards, communities, and social network services. Due to the development of such information and communication networks, life becomes more convenient, and at the same time, the damage caused by rapid information exchange is also constantly increasing. Recently, cyber crimes such as sending sexual messages or personal attacks to certain people with recognition on the Internet, such as not only entertainers but also influencers, have occurred, and some of those exposed to these cybercrime have committed suicide. In this paper, in order to reduce the damage caused by malicious comments, research a method for improving the performance of discriminate malicious comments through feature extraction based on parts-of-speech.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. SVM 기반 악성댓글 판별모델

Ⅳ. 실험 및 결과

Ⅴ. 결론

(0)

(0)

로딩중