섬유 드레이프 이미지를 활용한 드레이프 생성 모델 구현에 관한 연구
A Study on the implementation of the drape generation model using textile drape image
- 한국스마트미디어학회
- 스마트미디어저널
- Vol10, No.4
- : KCI등재후보
- 2021.12
- 28 - 34 (7 pages)
드레이프는 의상의 외형을 결정하는 요인 중 하나로 섬유·패션 산업에서 매우 중요한 요소 중 하나이다. 코로나 바이러스의 영향으로 비대면 거래가 활성화되고 있는 시점에서, 드레이프값을 요구하는 업체들이 많아지고 있다. 하지만 중소기업이나 영세기업의 경우, 드레이프를 측정하는 것에 대한 시간과 비용적 부담을 느껴, 드레이프를 측정하는 데에 어려움을 겪고 있다. 따라서 본 연구는 디지털 물성을 측정하여 생성된 3D 시뮬레이션 이미지를 통해 조건부 적대적 생성 신경망을 이용하여 입력된 소재의 물성값에 대한 드레이프 이미지 생성을 목표로 하였다. 기존 보유한 736개의 디지털 물성값을 통해, 드레이프 이미지를 생성하였으며, 이를 모델 학습에 이용하였다. 이후 생성 모델을 통해 나온 이미지 샘플에 대하여 드레이프 값을 계산하였다. 실제 드레이프 실험 값과 생성 드레이프 값 비교결과, 첨두수의 오차는 0.75개였으며, 드레이프값의 평균 오차는 7.875의 오차를 보임을 확인할 수 있었다.
Drape is one of the factors that determine the shape of clothes and is one of the very important factors in the textile and fashion industry. At a time when non-face-to-face transactions are being activated due to the impact of the coronavirus, more and more companies are asking for drape value. However, in the case of small and medium-sized enterprises (SMEs), it is difficult to measure the drape, because they feel the burden of time and money for measuring the drape. Therefore, this study aimed to generate a drape image for the material property value input using a conditional adversarial neural network through 3D simulation images generated by measuring digital properties. A drape image was created through the existing 736 digital property values, and this was used for model training. Then, the drape value was calculated for the image samples obtained through the generative model. As a result of comparing the actual drape experimental value and the generated drape value, it was confirmed that the error of the peak number was 0.75, and the average error of the drape value was 7.875
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 연구 방법론 및 연구 설계
Ⅳ. 연구 결과
Ⅵ. 결론