상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
162175.jpg
KCI등재후보 학술저널

통계 및 이미지 데이터를 활용한 가짜 SNS 계정 식별 기술

Fake SNS Account Identification Technique Using Statistical and Image Data

DOI : 10.30693/SMJ.2022.11.1.58
  • 142

인터넷 기술이 발전함에 따라 SNS 사용자가 늘어나고 있다. SNS의 대중화가 진행되면서 소셜 네트워크의 영향력과 익명성을 활용한 SNS형 범죄가 나날이 증가하고 있는 추세이다. 본 논문에서는 인스타그램에서 SNS형 범죄에 주로 이용되는 가짜 계정 분류를 위해 통계 데이터와 이미지 데이터를 이용하여 각각 기계학습 및 딥러닝(deep learning) 기법을 활용한 가짜 계정 분류 방법을 제안한다. 모델 학습에 사용된 SNS 계정 데이터는 자체적으로 수집하였으며, 수집된 데이터는 통계 데이터 및 이미지 데이터에 기반한다. 통계 데이터의 경우에는 기계학습 및 다층 퍼셉트론 기반으로 학습을 진행하였고, 이미지 데이터의 경우에는 합성곱 신경망(Convolutional Neural Network, CNN) 기반으로 학습을 진행하였다. 학습을 진행한 결과 계정 분류에 대하여 정확도가 전반적으로 높게 나온 것을 확인하였다.

As Internet technology develops, SNS users are increasing. As SNS becomes popular, SNS-type crimes using the influence and anonymity of social networks are increasing day by day. In this paper, we propose a fake account classification method that applies machine learning and deep learning to statistical and image data for fake accounts classification. SNS account data used for training was collected by itself, and the collected data is based on statistical data and image data. In the case of statistical data, machine learning and multi-layer perceptron were employed to train. Furthermore in the case of image data, a convolutional neural network (CNN) was utilized. Accordingly, it was confirmed that the overall performance of account classification was significantly meaningful.

Ⅰ. 서론

Ⅱ. 모델 학습을 위한 데이터 수집

Ⅲ. 통계 데이터를 이용한 가짜 계정 분류

Ⅳ. 이미지 데이터를 이용한 가짜 계정 분류

Ⅴ. 결론

로딩중