상수도시스템 비정상상황 감지는 상수도시스템 사고(예, 관 파단) 발생 시 비정상적인 수리적 거동을 바탕으로 사고를 감지하는 기술로서, 이상감지 성능은 수집된 수리학적 데이터의 양과 품질에 영향을 받는다. 정상운영시의 수리학적 데이터는 스마트미터 및 다양한 계측기의 데이터를 활용하여 학습은 가능하나, 사고발생시 비정상적인 수리데이터는 현장실험 및 불규칙적인 사고 이외에는 확보할 수 없다. 따라서, 본 연구에서는 (1) 상수도시스템 수리해석 모형; (2) 실제 상수도시스템 비정상상황 데이터(예, 현장시험, 과거사고 데이터); (3) (1) 및 (2) 모두를 동시에 활용하는 3가지의 모의사고 데이터 생성기법을 제안한다. 제안된 모의사고 데이터 생성기법의 검증을 위해 국내 J-town network를 적용하였다. 제안된 기법은 실제 발생한 사고의 특성 및 여러 경우의 시나리오를 고려한 모의사고 데이터 생성이 가능하다.
The water distribution system (WDS) abnormal condition detection is a technology that identifies WDS failure (e.g., pipe bursts) based on abnormal hydraulic behaviors. Its performance in detecting abnormal conditions is impacted by the quantity and quality of the collected hydraulic data. The hydraulic data for normal operation conditions could be provided using the measurements collected by smart meters and various other sensors. However, the abnormal condition hydraulic data cannot be obtained except by means of field tests and irregular system failures. Therefore, this study proposes three data generation approaches that utilize the following: (1) a hydraulic simulation model; (2) real-field WDS abnormal condition data (e.g., field tests, past failure data); and (3) both (1) and (2), simultaneously. Subsequently, the J-town network was applied in order to verify the proposed approaches. It was found that these approaches can generate synthetic failure data when considering the characteristics of actual events of failure and various other scenarios.
1. 서 론
2. 상수도관망 모의데이터 생성기법
3. 적용 및 결과
4. 결 론
감사의 글
References