In this study, a three-dimensional (3D) printed gastro-retentive tablet (3DPGRT) containing sarpogrelate HCl was prepared by changing the amount of the polymers (Eudagit??L100-55 (EuL), pectin, and polyethylene oxide (PEO)) by coupling hot melt extrusion (HME) and 3D printing technology. The study aims to evaluate the swelling and dissolution behavior for application as a gastro-retentive drug delivery system and optimize the formulation of 3DPGRT based on the design of experiment using central composite design. The flexibility and elasticity of the extruded filaments were affected by EuL, pectin, and PEO, which either showed a linear or quadratic pattern. 3DPGRT containing sarpogrelate HCl was fabricated successfully by coupling HME and a fused deposition modeling 3D printer without being affected by EuL, pectin, and PEO. Compatibility studies of the drug-excipient through FT-IR and DSC revealed the absence of any interaction between the drug and polymers. The developed 3DPGRT possessed the ability to float over 10 h. The dissolution rate of sarpogrelate HCl was significantly affected by the interaction between EuL and pectin. The results confirmed that the mechanism of drug release of 3DPGRT is caused by a combination of non-Fickian diffusion and dilatation, which fits well with the Higuchi and Korsmeyer-Peppas model. The optimized formulation have been obtained by numerical optimization, which yielded excellent floating properties and a desirable swelling ratio with controlled drug release. This study showed the application of quality by design in the formulation development of 3DPGRT coupled with HME, which can be used to control the swelling characteristics and dissolution behavior through the interaction between EuL and pectin.
서론(Introduction)
방법(Methods)
결과 및 고찰(Results and Discussion)
결론(Conclusion)
감사의 말씀(Acknowledgment)
Conflict of Interest
References