Yolo V4 딥러닝 지능기술을 이용한 과일 불량 부위 검출
Fruit’s Defective Area Detection Using Yolo V4 Deep Learning Intelligent Technology
- 한국스마트미디어학회
- 스마트미디어저널
- Vol11, No.4
-
2022.0546 - 55 (10 pages)
-
DOI : 10.30693/SMJ.2022.11.4.46
- 199

과일 품질 자동 선별 시스템에서 흠집이나 부패한 부위가 존재하는 불량 과일을 우선적으로 검출하여 제거하는 작업은 매우 중요하다. 본 연구에서는 기존의 영상처리 기법을 이용하여 불량 부위가 있는 과일 검출하는 방법의 한계점을 극복하기 위하여, 최신 인공지능 기술인 Yolo V4 딥러닝 지능기술을 이용하여 과일 불량 부위를 검출하는 방법을 제안한다. 본 연구에서는 흠집 또는 부패 부위가 존재하는 1,100개의 불량 사과 및 1,300개의 불량 배를 포함한 총 2,400개의 불량 과일에 대하여 Yolo V4 딥러닝 모델을 사용하여 학습하고 불량 부위 검출 실험을 하였다. 성능 실험 결과에 따르면 사과의 정확률은 0.80, 재현율은 0.76, IoU는 69.92%, mAP는 65.27%이고, 배의 정확률은 0.86, 재현율은 0.81, IoU는 70.54%, mAP는 68.75%의 성능을 나타내었다. 본 연구에서 제안한 방법은 기존 영상처리 기법을 이용한 방법보다 불량 부위가 있는 과일을 실시간으로 정확하게 선별하여 기존 과일 자동 품질 선별시스템의 성능을 획기적으로 개선할 수 있다.
It is very important to first detect and remove defective fruits with scratches or bruised areas in the automatic fruit quality screening system. This paper proposes a method of detecting defective areas in fruits using the latest artificial intelligence technology, the Yolo V4 deep learning model in order to overcome the limitations of the method of detecting fruit’s defective areas using the existing image processing techniques. In this study, a total of 2,400 defective fruits, including 1,000 defective apples and 1,400 defective fruits with scratch or decayed areas, were learned using the Yolo V4 deep learning model and experiments were conducted to detect defective areas. As a result of the performance test, the precision of apples is 0.80, recall is 0.76, IoU is 69.92% and mAP is 65.27%. The precision of pears is 0.86, recall is 0.81, IoU is 70.54% and mAP is 68.75%. The method proposed in this study can dramatically improve the performance of the existing automatic fruit quality screening system by accurately selecting fruits with defective areas in real time rather than using the existing image processing techniques.
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. Yolo V4 딥러닝 모델 기반 과일 불량 부위 검출
Ⅳ. 결론
(0)
(0)