딥러닝 기술을 이용한 넙치의 질병 예측 연구
A Study on Disease Prediction of Paralichthys Olivaceus using Deep Learning Technique
- 한국스마트미디어학회
- 스마트미디어저널
- Vol11, No.4
- : KCI등재후보
- 2022.05
- 62 - 68 (7 pages)
수산 양식장 질병 감염의 확산을 사전에 차단을 위해서는 양식장의 수질 환경 및 생육 어류의 상태를 실시간모니터링하면서 어류의 질병을 예측하는 시스템이 필요하다. 어류 질병 예측의 기존 연구는 이미지 처리 기법이 대부분이었으나 최근에는 딥러닝 기법을 통한 질병 예측방법의 연구가 활발히 진행되고 있다. 본 논문에서는 수산 양식장에서 발생할 수 있는 넙치의 질병을 딥러닝 기술로 예측하는 방법에 대한 연구결과를 소개하고자 한다. 이 방법은 양식장에서 수집된 카메라 영상에 데이터 증강과 전처리 포함하여 질병 인식률의 성능을 높인다. 이것을 통해 질병 어류를 조기 발견으로 양식 어업에서 어류 집단 폐사 등 어업 재해를 예방하고 지역 수산 양식장으로 어류의 질병 확산 피해를 줄여 매출액 감소 차단될 것으로 기대한다.
To prevent the spread of disease in aquaculture, it is a need for a system to predict fish diseases while monitoring the water quality environment and the status of growing fish in real time. The existing research in predicting fish disease were image processing techniques. Recently, there have been more studies on disease prediction methods through deep learning techniques. This paper introduces the research results on how to predict diseases of Paralichthys Olivaceus with deep learning technology in aquaculture. The method enhances the performance of disease detection rates by including data augmentation and pre-processing in camera images collected from aquaculture. In this method, it is expected that early detection of disease fish will prevent fishery disasters such as mass closure of fish in aquaculture and reduce the damage of the spread of diseases to local aquaculture to prevent the decline in sales.
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 넙치의 질병 예측 방법
Ⅳ. 결론