상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제17권 제3호.jpg
KCI등재 학술저널

딥러닝 기반 직원 안전용 헬멧과 마스크 분류

코로나 시대에서 감염의 위험을 줄이기 위하여 반드시 마스크를 착용하여야 하며, 건축 공사장과 같은 위험한 작업 환경에서 일하는 직원의 안전을 위하여 헬맷을 쓰는 것은 필수불가결하다. 본 논문에서는 헬멧과 마스크의 착용 여부를 분류하는 효과적인 딥러닝 모델 HelmetMask-Net를 제안한다. HelmetMask-Net은 CNN 기반으로 설계되며, 전처리, 컨벌류션 계층, 맥스풀링 계층과 4 가지 출력이 있는 완전결합 계층으로 구성되며, 헬멧, 마스크, 헬멧과 마스크, 헬멧과 마스크을 착용하지 않은 4 가지 경우를 구분한다. 정확도, 최적화, 초월변수의 수를 고려한 실험으로 2 컨볼루션 계층과 AdaGrad 최적화를 가진 구조가 선정되었다. 모의 실험 결과 99%의 정확도를 보여 주었고, 기존의 모델에 비하여 성능이 우수함을 확인하였다. 제안된 분류기는 코비드 19시대에 직원의 안전을 향상시킬 수 있을 것이다.

Wearing a mask is also necessary to limit the risk of infection in today's era of COVID-19 and wearing a helmet is inevitable for the safety of personnel who works in a dangerous working environment such as construction sites. This paper proposes an effective deep learning model, HelmetMask-Net, to classify both Helmet and Mask. The proposed HelmetMask-Net is based on CNN which consists of data processing, convolution layers, max pooling layers and fully connected layers with four output classifications, and 4 classes for Helmet, Mask, Helmet & Mask, and no Helmet & no Mask are classified. The proposed HelmatMask-Net has been chosen with 2 convolutional layers and AdaGrad optimizer by various simulations for accuracy, optimizer and the number of hyperparameters. Simulation results show the accuracy of 99% and the best performance compared to other models. The results of this paper would enhance the safety of personnel in this era of COVID-19.

Ⅰ. Introduction

Ⅱ. Related works

Ⅲ. Dataset and methodology

Ⅳ. Experimental Results

Ⅴ. Performance evaluation

Ⅵ. Conclusion

References

로딩중