머신러닝 기반 시설재배 딸기 생산량 예측 연구
A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure
- 한국스마트미디어학회
- 스마트미디어저널
- Vol11, No.5
- : KCI등재후보
- 2022.06
- 9 - 16 (8 pages)
최근 농업 현장에서는 빅데이터와 IoT(Internet of Things) 등 기술을 적용하여 디지털농업 스마트팜으로 자동화를 하고 있다. 이러한 스마트팜은 작물의 환경을 측정하고 데이터를 조사하고 가공하여 생산량의 증대와 작물의 품질을 향상하고자 한다. 생산량 예측은 첨단 농업인 스마트팜 디지털 농업에서 중요한 연구로 빅데이터를 활용하여 환경데이터를 분석하고 나아가 생육정보 데이터 품질 관리를 위한 표준화 연구가 필요하다. 본 논문에서는 스마트팜 딸기 농장에서 수집된 환경 및 생산량 데이터를 분석하여 연구하였다. 회귀분석을 기반으로 릿지회귀(Ridge Regression), LightGBM, XGBoost를 사용하여 작물 생산량 예측 모델을 분석하였다. 3가지 모델 중 최적의 모델은 XGBoost로 R2는 82.5%의 설명력을 보였다. 연구 결과 양액흡수량과 환경데이터간의 상관관계를 확인할 수 있었고, 생산량 예측 연구에 대한 유의미한 결과를 얻을 수 있었다. 향후 작물의 생육환경 정보 및 양액의 성분 등 양액흡수량을 연구하여 양액관리를 통해 환경오염 예방 및 양액 절감에 기여할 것으로 기대된다.
Recently, agricultural sites are automating into digital agricultural smart farms by applying technologies such as big data and Internet of Things (IoT). These smart farms aim to increase production and improve crop quality by measuring the environment of crops, investigating and processing data. Production prediction is an important study in smart farm digital agriculture, which is a high-tech agriculture, and it is necessary to analyze environmental data using big data and further standardized research to manage the quality of growth information data. In this paper, environmental and production data collected from smart farm strawberry farms were analyzed and studied. Based on regression analysis, crop production prediction models were analyzed using Ridge Regression, LightGBM, and XGBoost. Among the three models, the optimal model was XGBoost, and R2 showed 82.5 percent explanatory power. As a result of the study, the correlation between the amount of positive fluid absorption and environmental data was confirmed, and significant results were obtained for the production prediction study. In the future, it is expected to contribute to the prevention of environmental pollution and reduction of sheep through the management of sheep by studying the amount of sheep absorption, such as information on the growing environment of crops and the ingredients of sheep.
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론