상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
스마트미디어저널 Vol11, No.5.jpg
KCI등재후보 학술저널

Head-Tail 토큰화 기법을 이용한 한국어 품사 태깅

기존의 한국어 품사 태깅 방식은 복합어를 단위 형태소들로 분해하여 품사를 부착하므로 형태소 태그가 세분화되어 있어서 태거의 활용 목적에 따라 불필요하게 복잡하고 다양한 어절 유형들이 생성되는 단점이 있다. 딥러닝 언어처리에서는 키워드 추출 목적으로 품사 태거를 사용할 때 복합조사, 복합어미 등 문법 형태소들을 단위 형태소로 분할하지 않는 토큰화 방식이 효율적이다. 본 연구에서는 어절을 형태소 단위로 토큰화할 때 어휘형태소 부분과 문법형태소 부분 두 가지 유형의 토큰으로만 분할하는 Head-Tail 토큰화 기법을 사용하여 품사 태깅 문제를 단순화함으로써 어절이 과도하게 분해되는 문제점을 보완하였다. Head-Tail 토큰화된 데이터에 대해 통계적 기법과 딥러닝 모델로 품사 태깅을 시도하여 각 모델의 품사 태깅 정확도를 실험하였다. 통계 기반 품사 태거인 TnT 태거와 딥러닝 기반 품사 태거인 Bi-LSTM 태거를 사용하여 Head-Tail 토큰화된 데이터셋에 대한 품사 태깅을 수행하였다. TnT 태거와 Bi-LSTM 태거를 Head-Tail 토큰화된 데이터셋에 대해 학습하여 품사 태깅 정확도를 측정하였다. 그 결과로, TnT 태거는 97.00%인데 비해 Bi-LSTM 태거는 99.52%의 높은 정확도로 품사 태깅을 수행할 수 있음을 확인하였다.

Korean part-of-speech taggers decompose a compound morpheme into unit morphemes and attach part-of-speech tags. So, here is a disadvantage that part-of-speech for morphemes are over-classified in detail and complex word types are generated depending on the purpose of the taggers. When using the part-of-speech tagger for keyword extraction in deep learning based language processing, it is not required to decompose compound particles and verb-endings. In this study, the part-of-speech tagging problem is simplified by using a Head-Tail tokenization technique that divides only two types of tokens, a lexical morpheme part and a grammatical morpheme part that the problem of excessively decomposed morpheme was solved. Part-of-speech tagging was attempted with a statistical technique and a deep learning model on the Head-Tail tokenized corpus, and the accuracy of each model was evaluated. Part-of-speech tagging was implemented by TnT tagger, a statistical-based part-of-speech tagger, and Bi-LSTM tagger, a deep learning-based part-of-speech tagger. TnT tagger and Bi-LSTM tagger were trained on the Head-Tail tokenized corpus to measure the part-of-speech tagging accuracy. As a result, it showed that the Bi-LSTM tagger performs part-of-speech tagging with a high accuracy of 99.52% compared to 97.00% for the TnT tagger.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 품사 태깅 모델

Ⅳ. 실험 및 결과

Ⅴ. 결론

로딩중