
EfficientNet 활용한 딸기 병해 진단 서비스
Strawberry disease diagnosis service using EfficientNet
- 한국스마트미디어학회
- 스마트미디어저널
- Vol11, No.5
- : KCI등재후보
- 2022.06
- 26 - 37 (12 pages)
본 논문에서는 시설재배 작물 중 딸기의 초기 병해를 방제하고자 이미지를 자동으로 취득하고, EfficientNet 모델을 활용해 병해를 분석하여 농민에게 병해 여부를 알려주고, 전문가를 통한 병해 진단 서비스를 제안한다. 딸기 생육단계의 이미지를 취득하고, 학습된 EfficientNet 모델을 활용해 병해 진단 분석결과를 농민의 애플리케이션으로 전송 후 전문가의 피드백을 신속하게 받을 수 있다. 데이터 세트로는 실제 시설재배를 운영하는 농민을 섭외하여 시스템을 이용해 이미지를 취득하였고, 핸드폰으로 촬영한 이미지의 초안을 활용하여 데이터가 부족한 문제를 해결했다. 실험 결과 EfficientNet B0부터 B7까지의 정확도는 유사하여 추론 속도가 가장 빠른 B0를 채택했다. 성능향상을 위해 ImageNet으로 사전학습 된 모델을 사용해 Fine-tuning 했고, 100 Epoch부터 급격한 성능향상을 확인했다. 제안하는 서비스는 초기 병해를 빠르게 탐지하여 생산량을 증대시킬 것으로 기대한다.
In this paper, images are automatically acquired to control the initial disease of strawberries among facility cultivation crops, and disease analysis is performed using the EfficientNet model to inform farmers of disease status, and disease diagnosis service is proposed by experts. It is possible to obtain an image of the strawberry growth stage and quickly receive expert feedback after transmitting the disease diagnosis analysis results to farmers applications using the learned EfficientNet model. As a data set, farmers who are actually operating facility cultivation were recruited and images were acquired using the system, and the problem of lack of data was solved by using the draft image taken with a cell phone. Experimental results show that the accuracy of EfficientNet B0 to B7 is similar, so we adopt B0 with the fastest inference speed. For performance improvement, Fine-tuning was performed using a pre-trained model with ImageNet, and rapid performance improvement was confirmed from 100 Epoch. The proposed service is expected to increase production by quickly detecting initial diseases.
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제안하는 서비스
Ⅳ. 실험 결과 및 성능 평가
Ⅴ. 결론