상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국방재안전학회논문집 15권 2호.jpg
학술저널

LSTM기반의 자료 변동성을 고려한 하천수 회귀수량 예측 알고리즘 개발연구

가뭄 및 갈수시에 용수부족 현상이 발생하나 회귀수량을 고려한 대응이나 대책 마련이 진행되지 않고 있다. 이에 본 연구에서 자료기반의 기계학습 모형(LSTM)을 통해 회귀수량 중 하수종말처리장의 방류량을 예측하였다. 입력자료로 방류량, 유입량, 강수량, 수위를 사용하였고 예측 결과의 정확도를 개선하기 위하여 추가적으로 입력변수의 변동성 분포를 고려하였다. 방류량 자료의 변동성을 확인하기 위해서 관측값과 분포 사이의 잔차를 복합삼각함수 형태로 가정하여 이론적인 확률분포와 함께 방류량 최적의 분포 형태로 나타내었다. 변동성 분포를 고려한 입력자료를 이용한 결과와 그렇지 않는 결과를 비교한 결과, 오차정도가 감소함을 보였으며 이는 변동성 분포가 계절성을 상대적으로 잘 재현하였기 때문이라 판단된다. 따라서 본 연구에서 구축한 하수종말장처리장의 방류량 예측 모형을 활용할 경우 보다 정확한 회귀수량 예측이 가능하여 효율적인 하천수 관리 체계를 수립하는데 기초자료로 활용될 수 있을 것으로 기대된다.

The countermeasure for the shortage of water during dry season and drought period has not been considered with return flowrate in detail. In this study, the outflow of STP was predicted through a data-based machine learning model, LSTM. As the first step, outflow, inflow, precipitation and water elevation were utilized as input data, and the distribution of variance was additionally considered to improve the accuracy of the prediction. When considering the variability of the outflow data, the residual between the observed value and the distribution was assumed to be in the form of a complex trigonometric function and presented in the form of the optimal distribution of the outflow along with the theoretical probability distribution. It was apparently found that the degree of error was reduced when compared to the case not considering where the variance distribution. Therefore, it is expected that the outflow prediction model constructed in this study can be used as basic data for establishing an efficient river management system as more accurate prediction is possible.

1. 서 론

2. 방법론

3. 자료 구축

4. 결과 및 분석

5. 결 론

Acknowledgment

References

로딩중