상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제17권 제4호.jpg
KCI등재 학술저널

SLAM을 이용한 카메라 기반의 실내 배송용 자율주행 차량 구현

본 논문에서는 Visual 동시적 위치추정 및 지도작성(SLAM : Simultaneous Localization and Mapping)기술을 응용하여 실내에서 생성된 SLAM 맵을 기반으로 지정된 목적지에 물건을 배달하는 자율주행 차량 플랫폼을 제안하였다. 실내에서 SLAM 맵을 생성하기 위해 소형 자율주행 차량 플랫폼의 상단에 SLAM 맵 생성을 위한 심도 카메라를 설치하고 SLAM 맵 속에서의 정확한 위치추정을 하기 위해 추적 카메라를 장착하여 구현하였다. 또한, 목적지의 표찰을 인식하기 위해 합성곱 신경망(CNN : Convolutional neural network)을 사용하여 목적지에 정확하게 도착할 수 있도록 주행 알고리즘을 적용하여 설계하였다. 실내 배송 자율주행 차량을 실제로 제작하였고 SLAM 맵의 정확도 확인과 CNN을 통한 목적지 표찰 인식 실험을 수행하였다. 결과적으로 표찰 인식의 성공률을 향상시켜 구현한 실내 배송용 자율주행 차량의 활용 적합성 여부를 확인하였다.

In this paper, we proposed an autonomous vehicle platform that delivers goods to a designated destination based on the SLAM (Simultaneous Localization and Mapping) map generated indoors by applying the Visual SLAM technology. To generate a SLAM map indoors, a depth camera for SLAM map generation was installed on the top of a small autonomous vehicle platform, and a tracking camera was installed for accurate location estimation in the SLAM map. In addition, a convolutional neural network (CNN) was used to recognize the label of the destination, and the driving algorithm was applied to accurately arrive at the destination. A prototype of an indoor delivery autonomous vehicle was manufactured, and the accuracy of the SLAM map was verified and a destination label recognition experiment was performed through CNN. As a result, the suitability of the autonomous driving vehicle implemented by increasing the label recognition success rate for indoor delivery purposes was verified.

Ⅰ. 서 론

Ⅱ. 하드웨어 구성 및 알고리즘

Ⅲ. 적용 기술

Ⅳ. 실험 결과

Ⅴ. 결 론

References

로딩중