상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
International Journal of Fire Science and Engineering Vol. 36, No. 2.jpg
학술저널

Statistical Characteristics of Scattering Ratio Based on Three Optical Wavelengths for Smoke Particles

Photoelectric smoke detectors, which operate by reacting to the scattering of light caused by particles entering the light path, are widely used and extremely sensitive. Owing to higher standards imposed by Underwriters Laboratories, researchers have begun analyzing the properties of smoke particles. In particular, several wavelengths are used to classify particles by their scattering reactivity. The performances of actual smoke detectors are limited by their hardware and price. Therefore, properties that can distinguish particle types in these limited conditions must be determined. In addition, algorithms for extracting valid data intervals from unstable scattering data must be developed. In this study, scattering intensity ratios for three wavelengths are derived via simulations of light scattering by particles. An upper cumulative sum is defined for the three wavelengths, and an index for the start of particle inflow is extracted. In addition, valid intervals are extracted based on the scattering intensity ratios and the moving variance of adjacent wavelengths, and the properties of each particle are defined using the extracted indexes. For verification, a data acquisition device that can obtain data using the three selected wavelengths (470, 525, and 850 nm) from two sensors is designed. Five types of fire sources and non-fire alarm sources are selected and used in a test chamber designed to generate particle data. After applying the algorithm, the data in the valid data intervals can be used to derive a sample mean scattering intensity ratio that is more constant than that of the overall data or the data processed using the CUSUM index. In addition, the fire sources have a higher sample mean scattering intensity ratio than water vapor, which is a non-fire alarm source. The scattering intensity ratios for smoke particles can be extracted in real time via a comparison with experimental results obtained from the selected sensors.

1. Introduction

2. Background

3. Algorithm

4. Experimental Measurement

5. Conclusion

Author Contributions

Conflicts of Interest

Acknowledgments

References

로딩중