상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
스마트미디어저널 Vol11, No.9.jpg
KCI등재후보 학술저널

AI기반 스마트 수질환경관리 서비스 플랫폼 개발

최근 기후변화에 의한 수온상승, 과다한 영양염류의 유입 및 하천환경의 변화로 인한 주요하천 및 호소에 대한 조류발생 빈도 및 범위가 증가하고 있다. 이상조류에는 녹조와 적조가 있다. 녹조현상은 물속의 클로로필(Chl-a) 등의 남조류가 과다 성장하여 물의 색이 짙은 녹색으로 변하는 현상으로, 미량의 냄새물질과 독소를 생성하여 수질악화와 식수안전에 대한 우려가 급증하고 있다. 본 연구는 생활주변 환경의 생태하천과 호소에서 측정된 수질정보를 원격지에서 1:1 실시간모니터링 및 제어하기 위하여 디지털트윈의 3D 가상세계를 구축하고, 사물인터넷(IOT) 센서기반의 수질정보 센서측정기를 개발하며, AI의 머신러닝 기반 수집데이터 분석을 토대로 녹조 등 수질오염의 발생원인과 확산패턴을 예측하여 조류경보와 수질예보를 할 수 있는 스마트 수질환경 서비스 플랫폼 구축을 제안하고자 한다.

Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 시스템 설계 및 구현

Ⅳ. 시스템 평가

Ⅴ. 결론

REFERENCES

로딩중