PET에서 영상화를 위해서는 검출기에 입사한 감마선과 상호작용한 섬광 픽셀의 위치를 측정해야한다. 이를 위해서 기존 시스템에서는 섬광 픽셀의 평면 영상을 획득하여, 각 섬광 픽셀이 영상화된 영역을 분리한 후, 섬광 픽셀의 위치를 특정하여 디지털 신호로 획득한다. 본 연구에서는 검출기의 광센서에서 형성되는 신호를 바탕으로 딥러닝 방법을 적용하여, 여러 절차를 거치지 않고 직접 디지털 신호로 획득하는 방법을 개발하였다. 이에 대한 검증 및 위치 측정의 정확도 평가를 위해 DETECT2000 시뮬레이션을 수행하였다. 6 x 6 섬광 픽셀 배열과 4 x 4 광센서를 사용하여 검출기를 구성하였으며, 섬광 픽셀의 중심에서 감마선 이벤트를 발생시켜, 앵거 식을 통해 4채널의 신호로 합산하였다. 획득된 신호를 사용하여 딥러닝 모델을 학습한 후, 섬광 픽셀의 서로 다른 깊이 방향에서 발생된 감마선 이벤트에 대한 위치를 측정하였다. 그 결과 모든 섬광 픽셀 및 위치에서 정확한 결과를 보였다. 본 연구에서 개발한 방법을 PET 검출기에 적용할 경우, 보다 편리하게 섬광 픽셀의 위치를 디지털 신호로 측정할 수 있을 것이다.
For imaging in positron emission tomography(PET), it is necessary to measure the position of the scintillation pixel interacting with the gamma rays incident on the detector. To this end, in the conventional system, a flood image of the scintillation pixel is obtained, the imaged area of each scintillation pixel is separated, and the position of the scintillation pixel is specified and acquired as a digital signal. In this study, a deep learning method was applied based on the signal formed by the photosensor of the detector, and a method was developed to directly acquire a digital signal without going through various procedures. DETECT2000 simulation was performed to verify this and evaluate the accuracy of position measurement. A detector was constructed using a 6 x 6 scintillation pixel array and a 4 x 4 photosensor, and a gamma ray event was generated at the center of the scintillation pixel and summed into four channels of signals through the Anger equation. After training the deep learning model using the acquired signal, the positions of gamma-ray events that occurred in different depth directions of the scintillation pixel were measured. The results showed accurate results at every scintillation pixel and position. When the method developed in this study is applied to the PET detector, it will be possible to measure the position of the scintillation pixel with a digital signal more conveniently.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT
Ⅳ. DISCUSSION
Ⅴ. CONCLUSION
Acknowledgement
Reference