상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
스마트미디어저널 Vol11, No.11.jpg
KCI등재후보 학술저널

SoC 환경에서 TIDL NPU를 활용한 딥러닝 기반 도로 영상 인식 기술

자율주행 자동차에서 딥러닝 기반 영상처리는 매우 중요하다. 자동차를 비롯한 SoC(System on Chip) 환경에서 실시간으로 도로 영상을 처리하기 위해서는 영상처리 모델을 딥러닝 연산에 특화된 NPU(Neural Processing Unit) 상에서 실행해야 한다. 본 연구에서는 GPU 서버 환경에서 개발된 7종의 오픈소스 딥러닝 영상처리 모델들을 TIDL (Texas Instrument Deep Learning) NPU 환경에 이식하였다. 성능 평가와 시각화를 통해 본 연구에서 이식한 모델들이 SoC 가상환경에서 정상 작동함을 확인하였다. 본 논문은 NPU 환경의 제약으로 인해 이식 과정에 발생한 문제들과 그 해결 방법을 소개함으로써 딥러닝 모델을 SoC 환경에 이식하려는 개발자 및 연구자가 참고할 만한 사례를 제시한다.

Deep learning-based image processing is essential for autonomous vehicles. To process road images in real-time in a System-on-Chip (SoC) environment, we need to execute deep learning models on a NPU (Neural Procesing Units) specialized for deep learning operations. In this study, we imported seven open-source image processing deep learning models, that were developed on GPU servers, to Texas Instrument Deep Learning (TIDL) NPU environment. We confirmed that the models imported in this study operate normally in the SoC virtual environment through performance evaluation and visualization. This paper introduces the problems that occurred during the migration process due to the limitations of NPU environment and how to solve them, and thereby, presents a reference case worth referring to for developers and researchers who want to port deep learning models to SoC environments.

Ⅰ. 서론

Ⅱ. 관련 연구

Ⅲ. 딥러닝 모델 TIDL 이식

Ⅳ. 실험 환경과 분석 결과

Ⅴ. 결론

REFERENCES

로딩중