OBD-II 정보를 이용한 운전자 스트레스 모니터링 시스템
Driving Stress Monitoring System Based on Information Provided by On-Board Diagnostics Version II
- 한국전자통신학회
- 한국전자통신학회 논문지
- 제18권 제1호
-
2023.0229 - 37 (9 pages)
-
DOI : 10.13067/JKIECS.2023.18.1.29
- 95

인간의 생체 신호 데이터가 인간의 상태를 가장 잘 설명할 수 있다 할지라도 실제 운전 중에 운전자의 생체 데이터를 얻어 운전자의 상태를 판단하는 일은 쉽지 않다. 본 논문에서는 이러한 한계를 극복하기 위한 방법 중 하나로 운전자의 주행 정보를 이용한 운전자 스트레스 모니터링 시스템을 제안한다. 운전자의 주행 정보는 OBD-II 스캐너를 통해 취득하고, 실제 운전자의 운전 스트레스 여부는 E4 밴드를 통해 취득한 EDA 데이터를 이용하여 판단한다. 스트레스 감지 모델은 MLP 신경망 모델을 사용하였으며 약 한 달 간의 운행 데이터를 이용하여 학습시켰다. 제안한 시스템을 평가하기 위하여 약 1시간의 운행 데이터를 사용하였고 약 92%의 정확도를 얻을 수 있었다.
Although the biosignal is the best way to represent the human condition, it is difficult to acquire the biosignal of a driver driving for detecting driver’s condition. As one of the methods to overcome this limitation, this paper proposes a driving stress monitoring system based on information provided by OBD-II(on-board diagnostics version II). The driving information and EDA(Electrodermal activity) data are obtained through the OBD-II scanner and E4 wristband, respectively. EDA data is used as ground truth to distinguish whether driver is stressed or not. MLP(multi-layer perceptron) neural network is used as a model to detect driving stress and is trained using driving data for about a month. To evaluate the proposed system, we used about 1 hour of driving data and the accuracy is 92%.
Ⅰ. 서론
Ⅱ. 배경지식
Ⅲ. 데이터 세트
Ⅳ. 특징 벡터
Ⅴ. 실험 및 결과
Ⅵ. 결론
References
(0)
(0)