상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제18권 제1호.jpg
KCI등재 학술저널

신경망 구조의 적응 Wiener 필터를 이용한 비선형 잡음감쇠기

본 논문은 음향잡음감쇠기에서 신경망 구조의 Wiener 필터를 이용하여 비선형 잡음을 감쇠시키는 방법에 대하여 연구하였다. 이 시스템은 기존의 적응필터를 이용하는 대신 신경망 위너필터를 이용한 심층학습 알고리즘으로 비선형 잡음감쇠 성능을 개선한다. 128-neuron, 8-neuron 은닉층과 오차 역전파(back propagation) 알고리즘을 이용하여 비선형 잡음이 포함된 단일입력 음성신호로부터 음성을 추정한다. 본 연구에서 비선형 잡음에 대한 감쇠 성능을 검증하기 위하여 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 모의실험 결과, 본 시스템은 비선형 잡음이 포함되어 있는 경우에도 위너필터 대신 FNN 필터를 사용하면 잡음감쇠 성능이 상당히 개선되는 것을 볼 수 있다. 이는 FNN 필터의 복잡한 구조가 어떤 형태의 비선형 특성도 잘 표현하기 때문이다.

This paper studied a method of attenuating nonlinear noise using a Wiener filter of a neural network structure in an acoustic noise attenuator. This system improves nonlinear noise attenuation performance with a deep learning algorithm using a neural network Wiener filter instead of using a conventional adaptive filter. A voice is estimated from a single input voice signal containing nonlinear noise using a 128-neuron, 8-neuron hidden layer and an error back propagation algorithm. In this study, a simulation program using the Keras library was written and a simulation was performed to verify the attenuation performance for nonlinear noise. As a result of the simulation, it can be seen that the noise attenuation performance of this system is significantly improved when the FNN filter is used instead of the Wiener filter even when nonlinear noise is included. This is because the complex structure of the FNN filter expresses any type of nonlinear characteristics well.

Ⅰ. 서 론

Ⅱ. Wiener 필터 기반 비선형 잡음감쇠기

Ⅲ. FNN 신경망 필터의 구조

Ⅳ. 모의실험 결과

Ⅴ. 결 론

References

로딩중