상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
Journal of The Korean Data Analysis Society (JKDAS) Vol.25 No.2.jpg
KCI등재 학술저널

금융 분야의 범주 불균형 문제 해결을 위한 성과 최적화 기반의 부스팅 학습

본 연구에서는 금융 분야의 범주 불균형 문제에 적용된 부스팅 계열 알고리즘의 성과 개선을 위하여 성과지표에 대한 직접적인 최적화 기법을 도입한 GMBoost(Geometric Mean-based Boosting) 기법을 제안한다. 본 연구에서는 기업 부실, 카드 연체 및 카드 사기와 같은 대표적인 범주 불균형 금융 문제를 대상으로 GMBoost의 성과를 비교했다. 성과 비교를 위해 벤치마킹 모형으로 부스팅 계열 알고리즘인 AdaBoost, GBM, XGBoost를 활용하였으며, 이들과 GMBoost간의 성과 차이를 비교하였다. 30회의 교차 검증을 통하여 분석한 결과, 첫째, 다수 범주의 특이도에 초점을 맞추어 학습을 진행하여 범주 불균형 문제에서 유의한 성과를 내지 못하는 기존 부스팅 모형과는 달리 GMBoost는 다수 범주의 특이도와 소수 범주의 민감도를 동시에 고려하는 균형적인 학습을 진행함으로써 범주 불균형 문제 해결에 효과적임을 확인하였다. 둘째, 기존 부스팅 모형과 비교하여 GMBoost는 GM 및 AUC 측면에서 우수한 예측 성과를 보여주고 있으며, GM 및 AUC에 대한 t-검정 결과에서도 유의적인 성과 차이를 보여주었다.

In this paper, we propose a GMBoost (Geometric Mean-based Boosting) with a direct performance optimization technique to resolve class imbalance problem in financial field, such as bankruptcy, card insolvency, and card fraud. The conventional boosting models including AdaBoost, GBM, and XGBoost are used as benchmarking models for performance comparison. The main findings of 30 rounds of cross validations are as follows. First, the conventional boosting models largely depend on the specificity of majority, but ignore the sensitivity of minority. On the contrary, GMBoost proceeds with balanced learning that simultaneously considers the specificity and the sensitivity at the same time. Second, GMBoost outperforms the conventional boosting algorithms in terms of GM and AUC, and the results of the t-test for GM and AUC also showed that the performance of GMBoost is significantly different from those of the benchmarking models.

1. 서론

2. 선행연구고찰

3. 학습 알고리즘

4. 연구방법론

5. 연구 결과

6. 결론

References