상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제18권 제2호.jpg
KCI등재 학술저널

환자 증상정보 기반 희귀질환 조기 발견 보조시스템

희귀질환은 증상이 전형적이지 않고 진단정보가 부족하여 전문의들조차 증상을 기반으로 질환을 의심하거나 질환명을 떠올리는 데에 어려움을 겪는다. 따라서 증상이 시작한 시점에서부터 정확한 진단을 받기까지 많은 시간 및 비용이 발생하며, 이는 환자의 신체적, 정신적, 경제적 부담을 심각하게 초래한다. 환자의 증상정보를 통해 의심되는 희귀질환을 제시하여 의사의 진단에 활용할 수 있도록, 본 논문에서는 웹 크롤링 및 텍스트마이닝을 활용한 희귀질환 조기 발견 보조시스템을 제안하고 이를 구현한다.

Untypical symptoms and lack of diagnostic records make it difficult for even medical specialists to detect rare diseases. Thus, it takes a lot of time and money from the onset of symptoms to an accurate diagnosis, which seriously results in physical, mental, and economic pressure on patients. In this paper, we propose and implement an early detection assistance system for rare diseases using web crawling and text mining, which can suggest the names of suspected rare diseases so that medical staffs can easily recall the disease names and make a final diagnosis of the rare diseases.

Ⅰ. 서 론

Ⅱ. 희귀질환 조기 발견 보조시스템 개발

Ⅲ. Case Study

Ⅳ. 결론 및 향후연구

References

로딩중