상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
스마트미디어저널 Vol12, No.4.jpg
KCI등재후보 학술저널

이종 데이터 간 관계 모델링을 통한 개인화 추천 시스템의 지식 그래프 확장 기법

많은 추천 시스템 연구에서는 다양한 이종 데이터를 상호 호환적으로 통합하여 추천 시스템의 고질적인 데이터 부족 문제를 해결하고자 한다. 하지만, 지식 그래프를 활용하여 이종 데이터의 통합을 달성한 추천 시스템 연구는 거의 없으며, 대부분 연구에서는 기구축된 지식 그래프 상의 개체 간 연결이 명시적 관계로만 구성되어있다는 한계가 존재한다. 본 논문에서는 이종 데이터의 통합을 위해 다중 지식 베이스로부터 추출한 데이터 간 관계 모델링을 수행하고, 이를 통해 지식 그래프를 확장하는 방법을 제안한다. 또한, 딥러닝 기반의 잠재적 관계 모델링을 통해 지식 그래프 상 개체 간 관계 정보의 신뢰성을 높이고자 한다. 본 논문에서 제안하는 확장된 지식 그래프를 사용하면 개체의 특성 벡터 품질이 개선되고, 최종적으로 예측된 사용자 선호도의 정확성을 높일 수 있다. 또한, 실험을 통해 확장된 지식 그래프 기반 추천 정확도가 기존 지식 그래프 기반 추천 정확도에 비해 향상되었음을 확인하였다.

Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.

Ⅰ. 서 론

Ⅱ. 관련 연구

Ⅲ. 관계 모델링을 통한 지식 그래프 확장 기법

Ⅳ. 실 험

Ⅴ. 결론 및 향후 연구

REFERENCES

로딩중