상세검색
최근 검색어 전체 삭제
다국어입력
즐겨찾기0
한국전자통신학회 논문지 제18권 제3호.jpg
KCI등재 학술저널

이중 동종 CNN 구조를 이용한 ASL 알파벳의 이미지 분류

많은 사람들이 수화는 청각 장애가 있고 말을 할 수 없는 사람들을 위한 것이라고 생각하지만 물론 그들과 대화하고 싶은 사람들에게 필요하다. ASL(: American Sign Language) 알파벳 인식에서 가장 큰 문제 중 하나는 높은 클래스 간 유사성과 높은 클래스 내 분산이다. 본 논문에서는 이 두 가지 문제점을 극복할 수 있는 유사도 학습을 수행하여 이미지 간의 클래스 간 유사도와 클래스 내 분산을 줄이는 아키텍처를 제안하였다. 제안된 아키텍처는 매개변수(가중치 및 편향)를 공유하는 이중으로 구성된 동일한 컨벌루션 신경망으로 구성하고 또한 이 경로를 통해 유사도 학습과 분산을 줄이는 Keras API를 적용하였다. 이중 동종 CNN을 사용한 유사성 학습 결과는 두 클래스의 좋지 않은 결과를 포함하지 않음으로써 클래스 간 유사성과 변동성을 줄임으로서 정확도가 개선된 결과를 나타내고 있다.

Many people think that sign language is only for people who are deaf and cannot speak, but of course it is necessary for people who want to talk with them. One of the biggest challenges in ASL(American Sign Language) alphabet recognition is the high inter-class similarities and high intra-class variance. In this paper, we proposed an architecture that can overcome these two problems, which performs similarity learning to reduces inter-class similarities and intra-class variance between images. The proposed architecture consists of the same convolutional neural network with a double configuration that shares parameters (weights and biases) and also applies the Keras API to reduce similarity learning and variance through this pathway. The similarity learning results the use of the dual CNN shows that the accuracy is improved by reducing the similarity and variability between classes by not including the poor results of the two classes.

Ⅰ. Inroduction

Ⅱ. Related Work

Ⅲ. Proposed Method

Ⅳ. Experimental Results

Ⅴ. Conclusion

References

로딩중