지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구
Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System
- 한국스마트미디어학회
- 스마트미디어저널
- Vol12, No.5
- : KCI등재후보
- 2023.06
- 73 - 80 (8 pages)
최근 지능형 관제 시스템은 다양한 응용 분야에서 빠르게 발전하고 있으며, 딥러닝, IoT, 클라우드 컴퓨팅 등의 기술이 지능형 관제 시스템에 활용하는 방안이 연구되고 있다. 지능형 관제 시스템에서 중요한 기술은 영상에서 객체를 인식하고 추적하는 것이다. 그러나 기존의 다중 객체 추적 기술은 정확도 및 속도에서 문제점을 가지고 있다. 본 논문에서는 객체 추적의 정확성을 높이고, 객체가 서로 겹쳐있거나 동일한 클래스에 속하는 객체들이 많을 경우에도 빠르고 정확하게 추적 가능한 원샷 아키텍처 기반의 YOLO v5와 YOLO v6을 사용하여 실시간 지능형 관제시스템을 구현하였다. 실험은 YOLO v5와 YOLO v6를 비교하여 평가하였다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다.
Recently, intelligent control systems are developing rapidly in various application fields, and methods for utilizing technologies such as deep learning, IoT, and cloud computing for intelligent control systems are being studied. An important technology in an intelligent control system is recognizing and tracking objects in images. However, existing multi-object tracking technology has problems in accuracy and speed. In this paper, a real-time intelligent control system was implemented using YOLO v5 and YOLO v6 based on a one-shot architecture that increases the accuracy of object tracking and enables fast and accurate tracking even when objects overlap each other or when there are many objects belonging to the same class. The experiment was evaluated by comparing YOLO v5 and YOLO v6. As a result of the experiment, the YOLO v6 model shows performance suitable for the intelligent control system.
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 구현
Ⅳ. 실험결과
Ⅴ. 결론
REFERENCES