범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발
Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor
- 한국방사선학회
- 한국방사선학회 논문지
- 제17권 제3호
- : KCI등재
- 2023.06
- 367 - 373 (7 pages)
비행시 승무원이나 승객은 우주방사선과 공기나 비행기 기체와 반응하여 발생한 2차 산란선 등에 의해 피폭을 받게 된다. 항공기 승무원의 경우 우주기상 환경 시뮬레이션을 이용하여 계산된 피폭선량으로 방사선 안전관리를 적용받고 있다. 하지만, 태양활동이나 고도, 비행경로 등에 따라 피폭선량이 가변적이어서 계산법보다는 항로별 측정하는 것이 권고되고 있다. 본 연구에서는 범용 Si 센서와 다중채널파고분석기를 이용하여 우주방사선 선량을 측정할 수 있는 선량계를 개발하였다. 선량계산은 미우주항공국의 우주방사선 측정장비인 CRaTER(Cosmic Ray Telescope for the Effects of Radiation)의 알고리즘을 적용하였다. 표준 교정시설에서 Cs-137 662 keV 감마선으로 에너지 및 선량교정을 시행하였으며, 실험 범위에서 선량률 의존성이 없음을 확인하였다. 제작된 선량계를 이용하여 2023년 5월 두바이 인천 구간의 국제선에서 직접 선량을 측정한 결과 국내 우주방사선 선량평가코드(KREAM; Korean Radiation Exposure Assessment Model for Aviation Route Dose)로 계산된 결과와 12% 이내로 비슷하게 나타났으며, 고도와 위도가 높아짐에 따라 계산결과와 동일하게 선량이 증가하는 것을 확인하였다. 좀 더 많은 실증적 검증 실험이 요구되는 제한점은 있지만, 항공기 내 또는 개인 피폭선량 모니터링에 가성비가 우수한 선량계로 충분한 활용 가능성을 확인하였다.
Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.
Ⅰ. INTRODUCTION
Ⅱ. MATERIAL AND METHODS
Ⅲ. RESULT AND DISCUSSION
Ⅳ. CONCLUSION
Acknowledgement
Reference