Purpose - The main purpose of the paper is to examine the variables affecting carbon emissions in different nations around the world. Research design, data, and methodology - To measure its impact on carbon emissions, secondary data has data of the top 50 Countries have been taken. The stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) model have been used to quantify the factors that affect carbon emissions. A modified version using Industry 4.0 and region in fundamental STIRPAT model has been applied with the ordinary least square approach. The outcome has been measured using both the basic and extended STIRPAT models. Result - Technology found a positive determinant as well as statistically significant at the alpha level of 0.001models indicating that technological innovation helps reduce carbon emissions. In total, 4 models have been derived to test the best fit and find the highest explaining capacity of variance. Model 3 is found best fit in explanatory power with the highest adjusted R2 (97.95%). Conclusion - It can be concluded that the selected explanatory variables population and Industry 4.0 are found important indicators and causal factors for carbon emission and found constant with all four models for total CO2 and Co2 per capita.
1. Introduction
2. Review of Literature
3. Research Methodology
4. Result Discussion
5. Conclusion
References