One-dimensional (1D) nanostructures allow for precise control of geometrical size and shape, offering greater design flexibility than other nanostructures. 1D nanostructures, in particular, hold immense potential for revolutionizing the gas sensor field, owing to their extensive surface areas conducive to chemical reactions. To harness this potential, researchers have dedicated their efforts to developing fabrication methods that incorporate 1D nanostructures into gas sensor applications. Various techniques have been explored, including hydrothermal synthesis, electrospinning, sol-gel processes, solid-state chemical reactions, vapor-phase transport, and chemical vapor deposition. Despite these advancements, challenges regarding uniformity and reproducibility persist. In this report, we review the glancing angle deposition (GLAD) technique for applying 1D nanostructures to gas sensors and discuss to the potential of GLAD in overcoming existing limitations and driving forward the realm of 1D nanostructure-based gas sensors.
1. 서론
2. 반도체식 가스센서의 주요인자
3. 1차원 나노구조체 기반 가스센서의 연구동향
4. Conclusion
REFERENCES